If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7t^2=21
We move all terms to the left:
7t^2-(21)=0
a = 7; b = 0; c = -21;
Δ = b2-4ac
Δ = 02-4·7·(-21)
Δ = 588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{588}=\sqrt{196*3}=\sqrt{196}*\sqrt{3}=14\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{3}}{2*7}=\frac{0-14\sqrt{3}}{14} =-\frac{14\sqrt{3}}{14} =-\sqrt{3} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{3}}{2*7}=\frac{0+14\sqrt{3}}{14} =\frac{14\sqrt{3}}{14} =\sqrt{3} $
| (2x+16)-35=(4x+3) | | -2+x=-4+24x | | 5a+4=9a+3-4a | | y-5=3⁄4(X-12) | | 6x+11=93-7x | | 100=56+x | | -45+7x=-67 | | 22h=9=97 | | Y=-250x+9000 | | 3+5a=18 | | 3j/10=5/10 | | 6/x=4/13 | | 7(5b+7)=-26 | | 18/x=12 | | 2x+3=-3x+3(10-9) | | 8r+8=4r+5 | | 9+4w=10+2w | | (-3x)-9=45 | | x+4/x+1-12/7x+7=x/7 | | -12(x-3)-4=3(-2x+4)-6x | | 6x/x+4=x-1 | | 7(5b+7)=126 | | y=(24*1.5)5 | | 3x+4=-3x+6 | | 13x+9=14x | | 14x+6-10x=4x-3 | | 120/h=120 | | x=(3/2) | | 28x+1=29x-2 | | 2x-3(x-14)=-5 | | 14s+12=-7s | | 5+5x=13x-5 |